QE PWscf Input Examples
Published:
Content
pw.x
&CONTROL
title = ' '
prefix = ' '
outdir = './calout'
pseudo_dir = '/home/yongnanli08/PP'
calculation = 'scf'
nstep = 1000
iprint = 1 ! write band information each iprint step
tprnfor = .true. ! calculation of force
tstress = .true. ! calculation of stress
restart_mode = 'from_scratch'
verbosity = 'high'
disk_io = 'high'
forc_conv_thr = 1e-5 ! no need if not relax vc-relax
etot_conv_thr = 1e-6 ! no need if not relax vc-relax
! =========== Berry phase calculation ===============
! lelfield = .true.
! nberrycyc = 1
! =========== Dipole correction ===============
! dipfield = .true.
! tefield = .true.
/
&SYSTEM
nat=
ntyp=
ibrav= 0
ecutwfc= 40 ! in Ry, 40 Ry = 520 eV
occupations = 'smearing'
smearing = 'mp'
degauss = 1e-3 ! about 300 K
nosym = .true. ! no need, use for low-symmetric system (low-dimensional, etc)
force_symmorphic = .true. ! no need, force the symmetry group to be symmorphic, for yambo init
! =========== DFT D3 2009 ===============
! vdw_corr = 'DFT-D3'
! dftd3_version = 6
! =========== Assume isolation ===============
! assume_isolated = 'esm' ! 2D, no need esm_bc
! esm_bc = 'bc1'
! =========== Dipole correction ===============
! edir = 3 ! z-axis
! eamp = 0.0
! emaxpos = 0.5
! eopreg = 0.02
/
&ELECTRONS
electron_maxstep = 500
mixing_mode = 'plain' ! plain TF local-TF
mixing_beta = 0.2 ! Reduce if slab model not converged
mixing_ndim = 16 ! Increase if large of RAM
conv_thr = 1e-11 ! can be 1e-9 for relaxation
diagonalization = 'david' ! david cg ppcg
startingwfc='random'
diago_thr_init = 5e-6 ! for charge density, 1e-5, can reduce if not converged
! diago_full_acc = .true. ! all empty states are diagonalized at the same level of accuracy, need in nscf
/
&IONS
ion_dynamics = 'bfgs'
/
&CELL
cell_dynamics = 'bfgs'
/
ATOMIC_SPECIES
C 12.011 C.ONCVP.PBE.stringent.upf
CELL_PARAMETERS angstrom
6.19864000 0.00000000 0.00000000
-3.09931600 5.36817278 0.00000000
0.00000000 0.00000000 100
ATOMIC_POSITIONS angstrom
H 0.00000000 0.00000000 0.00299400
K_POINTS automatic
2 2 1 1 1 0
Pseudopotential sources
DFT+U
Necessity (not actually?):
nspin = 2
starting_magnetization
For QE <= 7.0:
Lda_plus_u = .true.
U_projection_type = 'ortho-atomic'
Hubbard_U(1) = 1e-8
Hubbard_U(2) = 1e-8
Number in the brackets refers to the ordering number of atom in ATOMIC_SPECIES
For QE > 7.0:
HUBBARD ortho-atomic
U ATOMIC_SPECIES1-3d 1e-8
Format: U [ATOMIC_SPECIES_NAME]-[ORBITAL] [U_VALUE]
Only transition metal elements are required to set in (maybe?)
Ortho-atomic might give more realistic result than atomic. If the ground state get stuck in a local minimum, use starting_ns_eigenvalue to help calculation reach desired/actual ground state
bands.x
&BANDS
prefix = ''
outdir = ''
filband = '_bands.dat'
/
will get _bands.dat, _bands.dat.gnu, _bands.dat.rap
hp.x
&inputhp
prefix = ''
outdir = ''
nq1 = 2
nq2 = 2
nq3 = 2
conv_thr_chi = 1.0d-6
iverbosity = 2
/
dos.x
&dos
prefix = ''
outdir = ''
Emin =
Emax =
DeltaE =
fildos = ''
/
projwfc.x
&projwfc
prefix = ''
outdir = ''
Emin =
Emax =
DeltaE =
filpdos = ''
plotboxes = .true.
/
L=1: Ordering: p_z p_x p_y L=2: Ordering: d_(z^2 ) d_xz d_zy d_(x^2-y^2 ) d_xy
pp.x
&inputpp
prefix = ' '
outdir = './calout'
filplot = 'qeppoutput' ! file saving charge density in qe format
plot_num= ! Differential charge density 9, electrostatic potential (V_bare + V_H) 11, ELF 8
/
! only need in 3D file outputing (charge density, ELF)
&plot
nfile = 1
iflag = 3 ! 3D ploting
output_format = 6 ! Can be read by VESTA
fileout = 'charge.prefix.cube' ! Can be read by VESTA
e1(1)=1.0,e1(2)=0.0,e1(3)=0.0,
e2(1)=0.0,e2(2)=1.0,e2(3)=0.0,
e3(1)=0.0,e3(2)=0.0,e3(3)=1.0,
x0(1)=1.0,x0(2)=0.0,x0(3)=0.0,
nx=101,ny=101,nz=2001
! e1 e2 e3 plotting parallelepiped vectors
! x0 origin of the parallelepiped
! nx ny nz number of points in the parallelepiped
/